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Nonlinear convection in a layer with 
nearly insulating boundaries 
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A general class of solutions is studied describing three-dimensional steady convection 
flows in a fluid layer heated from below with boundaries of low thermal conductivity. 
Non-linear properties of the solutions are analysed and the physically realizable 
convection flow is determined by a stability analysis with respect to arbitrary three- 
dimensional disturbances. The most surprising result is that square-pattern convection 
is preferred in contrast to two-dimensional rolls that represent the only form of stable 
convection in a symmetric layer with highly conducting boundaries. The analysis is 
carried out in the limit of infinite Prandtl number and for a particular boundary con- 
figuration. But it is shown that the results hold for arbitrary Prandtl number to the order 
to  which they have been derived and that other assumptions about the boundaries 
require only minor modifications as long as their thermal conductance remains low. 

1. Introduction 
The problem of convection in a horizontal layer heated from below has traditionally 

been considered under the assumption that the boundaries are infinitely conducting 
such that the deviation 6 of the temperature distribution from the static solution 
vanishes at the boundaries. This boundary condition is often well approximated in 
laboratory experiments and measurements show good agreement with the theoretical 
predictions. For recent reviews of linear and nonlinear aspects of convection in a 
layer heated from below, we refer to the articles by Normand, Pomeau & Velarde 
(1977) and by Busse (1978). But many geophysical and astrophysical convection 
problems, as well as those appearing in some engineering applications, do not exhibit 
well-conducting boundaries, and the ratio /3 between the thermal conductivities of 
the boundary and the fluid must be taken into account as an additional parameter. 

The importance of the influence of the ratio /3 on the critical Rayleigh number for 
the onset of convection was recognized early by Jeffrey (1926), but a systematic 
analysis of the problem had to await the work of Sani ( 1  963) and of Sparrow, Goldstein 
& Jonsson (1964). These latter authors included in their analysis the limit of vanishing 
,8 in which case the boundaries become insulating. An interesting result of this limit 
is that the horizontal wavelength of convection rolls tends to infinity and that the 
critical Rayleigh number equals the integer numbers 120 and 720 for stress-free and 
rigid boundaries, respectively. An analytical solution of the problem for /3 = 0 which 
illuminates those results was given by Jakeman (1968), who found simple expressions 
for the convective velocity and the temperature fields even in the case of the more 
realis tic rigid boundaries . 
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The fact that a simple analytical solution of the linear problem is available in the 
limit of vanishing p has provided the mathematical motivation €or the present study 
of the nonlinear properties of convection in this limit. From the physical point of 
view, the limit p < 1 is also attractive because i t  contrasts most sharply with the 
intensely studied case of infinitely conducting boundaries. The goal of the analysis 
of this paper is to isolate the nonlinear properties of the small p limit, rather than to 
produce results for an extensive range of parameters or €or especially realistic cases. 
In  fact, there has been little experimental activity on this aspect of thermal convec- 
tion, and observational data are not yet available for a comparison with theoretical 
predictions. It is hoped that the novel phenomena suggested by the theory will 
stimulate experimental research in this area. 

The mathematical approach of this paper follows the small amplitude perturbation 
study of the case of infinite p by Schluter, Lortz & Busse (1965), which will be referred 
to in this paper as SLB. As in the latter case, the analysis of this paper is confronted 
with the infinite degeneracy of the linear problem. Because of the isotropy and homo- 
geneity of the convection layer, an infinite number of steady, three-dimensional con- 
vection flows exist according to the linear theory. Not a11 of these solutions represent 
possible solutions of the nonlinear equations in the limit of small amplitude. Thus, the 
first part of the analysis deals with the problem of the reduction of the degeneracy 
by the solvability conditions derived from the nonlinear equations. Although the de- 
generacy is significantly reduced, it can be shown that there still exists an infinite 
number of possible steady solutions of the full equations. In order to determine the 
physically realizable solutions, the stability of all solutions with respect to small 
disturbances must be tested. This is done in the second part of the paper, in which 
arbitrary three-dimensional disturbances are superimposed onto the steady solutions, 
and the growth rates are calculated. While it is not possible to distinguish a single 
physically realizable steady solution, as in the case considered by SLB, a solution 
forming a square pattern appears to be preferred among a class of closely related 
solutions. 

In order to elucidate the mathematical structure of the problem, only the simplest 
case is treated explicitly. An infinite Prandtl number of the fluid is assumed and a 
special boundary configuration is considered. In the discussion a t  the end of this 
paper, i t  is shown that the results are in fact independent of the Prandtl number and 
that other assumptions about the boundaries can easily be taken into account. This 
generality of the problem, together with the fact that the analysis involves only 
rational numbers, contributes to its mathematical attraction. 

2. Mathematical formulation of the problem 
We consider a horizontal fluid layer of thickness d which is bounded by two infinite 

half spaces with the thermal conductivity Ace). In the steady static state, a constant 
heat flux traverses the system such that the temperatures TI and T, are attained at 
the upper and lower boundaries of the fluid. It is assumed that the fluid satisfies the 
Boussinesq approximation, i.e. the kinematic viscosity v, the conductivity A and the 
specific heat c at constant pressure are constant, and the temperature dependence of 
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can be neglected everywhere except in the gravity term. For the mathematical 
description of the problem, non-dimensional variables are introduced based on the 
length scale d, the time scale d2poc/h, and the temperature scale (T, - TI) R-l. Thus, 
the equations of motion for the velocity vector u and the heat equation for the devia- 
tion 8 of the temperature from the static temperature distribution can be written in 
the form 

P-1 -+u  v = - v T + e A + v 2 U ,  ( 2 . l a )  

v.u  = 0, ( 2 . l b )  

(;t * ) 

( i + u . v )  e = Ru.A+v2e, (2.1c) 

where A is the unit vector in the direction opposite to gravity, X = - g / g ,  and the 
Rayleigh number R and the Prandtl number P are defined by 

It is convenient to introduce a Cartesian system of co-ordinates with the origin on 
the centre plane of the layer and with the z co-ordinate in the vertical direction. 
Assuming rigid boundaries the boundary conditions become 

u=O at z=L f :$ ,  ( 2 . 2 4  

(2 .2b)  

where p denotes the conductivity ratio Ze)/h and e(e) describes the deviation from the 
static temperature distribution in the space ( z (  >/ 4. 

To eliminate the constraint of the continuity equation (2.1 b ) ,  we use the general 

(2 .3)  
representation 

for the solenoidal vector field u. In  order to simplify the problem we shall restrict our 
attention to the case of infinite Prandtl number, in which case the left-hand side of 
equation (2.1 a)  can be neglected. As we shall discuss in $6,  the results remain essen- 
tially unchanged when a finite value ofP is assumed. By taking the vertical component 
of the curl of equation ( 2 . l a ) ,  it can be shown that the toroidal part V x A$ of the 
velocity field must vanish for P = 00. An equation for the function v is obtained by 
taking the vertical component of the curl curl of equation (2.1 a), 

V'A~V - Az8 = 0 ( 2 . 4 ~ )  

u = V x ( V x A v ) + V x A $  

where Az = az/axz+ a2/8y2 

represents the Laplacian with respect to the horizontal dimensions. In  the steady case, 
the heat equation can be written in the form 

V28-RAzv = Lv.VB (2 .4b)  

where Sv stands for V x (V x Av). Using the energy method (see, for example, Joseph's 
19.76 book), it is readily seen that small amplitude steady solutions yield the lowest 
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Rayleigh number R for which non-decaying solutions exist for equations (2.1) to- 
gether with boundary conditions (2.2). The assumption of small amplitude steady 
solutions allows us to drop the right-hand side of equation (2.4b) and to obtain a 
separable solution of the resulting linear problem 

211 = W ( G Y ) f ( Z ) ,  ( 2 . 6 ~ )  

8, = w(z, ?/)dZ), 

A2w = -a2w. where zu satisfies the equation 

(Since the t,emperature coefficient of the density does not appear in the remainder of 
the paper, it is expected that it will not be confused with the wavenumber a.) In  
order to  determine the functions f (z )  and g(z ) ,  the boundary conditions must be ex- 
pressed in terms of wl and 8,. Using the appropriate solution of 

v 2 e ( e )  = 0 (2.7) 

with a horizontal dependence given by w(x, y), conditions (2.2) can be written in the 

v, = av,/az = 0 at z = & 3 ,  ( 2 . 8 ~ )  form 

(2.8b) 

From previous work it is known that a vanishes in the limit when /3 tends to zero. 
For the investigation of this limit we introduce 

y E p* (2.9) 

as perturbation parameter and anticipate that the wavenumber ac of the critical 
convection mode corresponding to the lowest value R becomes proportional to /3# 
in the limit vanishing y.  Accordingly, it  is assumed that the parameter 7, defined by 
the relationship 

is of the order unity for the convection modes of physical interest. The analysis of 
the following section will demonstrate that the value vC is indeed independent of y 
in the limit y 3 0. 

Regarding y as small parameter, the solution v,, 8, of the linear problem can be ob- 
tained in terms of a series in powers of y, 

(2.11) 

and analogous expressions for el and R,, The full problem described by equations 
(2.4) contains the amplitude e as an additional parameter. Starting with the solution 
(2.1 1 )  of the linear problem, the solution of the full problem can be obtained in terms 
of a series in powers of 6. Thus, the complete solution may be expressed in the form 
of a double series 

a2 = q2y, (2.10) 

0, = v p  + ywp + y2wp + . . . 

(2.12) 1 e = ~ y n o p ,  v = e m y n v p ,  
n- O,m= 1 n-0,m-1 

n - 0. m- 0 
R = 2 t?"ynRg). 

Because of the nature of the problem, many of the coefficients vanish and only a few 
must be calculated in order to determine the nonfinear properties of the system in 
the double limit of small y and small 6. 
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3. The linear problem 
In this section the attention is restricted to the part (2.11) of the general expansion 

(2.12). Since v1 enters equation (2.4b) only in the order y, the problem reduces in 
zeroth order to the equation 

(3 . la)  -eco) = 0 
a z 2  

a2  

with the boundary condition 

(3.1 b )  

The obvious solution of problem (3.1) is 

ep = cw(2, y) (3.2a) 

where c is a constant. From equation ( 2 . 4 ~ )  we obtain the solution satisfying condition 
(2.8a) 

(3.2b) 
In  the order clyl the equation 

v p  = w(x, y) c(z2- ))"4 1. 

is obtained from (2 .4b) .  The corresponding boundary condition is 

(3.3a) 

(3.3b) 

The coefficient Ria) is determined by the condition that a solution of the inhomo- 
geneous boundary-value problem (3.3) exists if and only if the right-hand side of 
equation ( 3 . 3 ~ )  is orthogonal to all solutions of the adjoint homogeneous problem. 
By multiplying equation ( 3 . 3 ~ )  by el0), partially integrating it and averaging it over 
the fluid layer, it is readily seen that the operator on the left-hand side of equation 
(3.3a) is self-adjoint and that Ria) must satisfy the relationship 

Rho) = (040) @ ~ o ) ) / ( @ ~ o )  .lo)') (3.4) 

where the angle brackets indicate the average over the fluid layer. Evaluation of 
expression (3.4) yields 

in agreement with the critical Rayleigh number computed in the limit p --f 0 by 
Sparrow et al. (1964). Equation ( 3 . 3 ~ )  yields the solution 

RAo) = 720 (3.5) 

where the arbitrary constant of integration has been fixed such that el1) is orthogonal 
to Oio). For later purposes, i t  is convenient to introduce as a general normalization 
condition 

By requiring 
(eSI"'e~0') = S,,S,,. (3.7) 

(w.4 = 1, (3.8) 
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the condition (3.7) allows us to set the as yet undetermined constant c equal to one. 
Using (3.6), an expression for up) can be derived from equation ( 2 . 4 ~ )  and condition 
(2.8a) 

vil) = l;12 [ - ( 2 ~ ) ~ '  + 15(2~)' + 126( 2 ~ ) ~  
7 x 8 ~ 9 ~ 1 0 ~ 2 ~ ~  

- 8 10( 2 ~ ) ~  + 1 187( 2 ~ ) ~  - 51 7 J W ( Z ,  y). (3.9) 

In order to determine the dependence of the critical Rayleigh number on y, the order 
.sly2 of equation (2.4b) must be considered: 

( 3 . 1 0 ~ )  
a2 

aza 
= 72(,9(1) - Ril)#) - Ri")$)). 1 

The corresponding boundary condition is 

(3.10b) 

The solvability condition for the inhomogeneous boundary-value problem is obtained 
in the same way as condition (3.4) and yields 

a - ep) = l;lop. 
az 

~ $ 1 )  = - ( ~ ( 0 )  0 (wp) ep) - (Op op) ~ - 1 )  (up)  epy-1 

= 7 2 0 ( ~ + 6 x 1 7 7 ~ 1 1 ) .  (3.11) 

For theonset of convection, the minimum R$$) of Ril) reached at 7 = rc is of importance, 

(3.12) 

This result demonstrates that the physically relevant value re of 7 is indeed of the 
order unity and that the expansion scheme (2.11) is internally consistent. At the 
same time, the result (3.11) suggests that a t  a small but finite value of the Rayleigh 
number tends to infinity as a tends to zero as is expected for finitely conducting 
boundaries. But this property cannot be firmly concluded from the present analysis 
because it lies beyond the validity of the perturbation expansion. 

4. Nonlinear steady convection 
Until this point it has not been necessary to specify the horizontal dependence of 

the solutions (2.6) beyond the general property (2.6). We shall base the discussion 
of the manifold of functions w(z, y) on the general solution of equation (2.6) 

where r is the position vector and where the vectors k, satisfy the properties 

kn.h = 0, lknl = a, k-, = -kn. (4.2) 

In  order that w(z, y) is a real function which satisfies condition (3.8) 
N 

n--N 
cnc; = 1, c,'= c-,, (4.3) 

must be required, where c,+ denotes the complex conjugate of c,. 
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The representation (4.1) is sufficiently general if N is allowed to tend to infinity and 
if the vectors k, cover approximately the full spectrum of horizontal directions. The 
infinite degeneracy of solution (2.5) expressed by the representation (4.1) is twofold. 
The fact that a rotation about a vertical axis or a horizontal translation of solution 
of the form (4.1) leads to a solution of the same form expresses the isotropy and homo- 
geneity of the fluid layer. It cannot be expected that this degeneracy will be affected 
by the nonlinear properties of the problem. In this section we are concerned about 
the other degeneracy of the manifold of solutions (2.5) which is expressed by the 
property that different three-dimensional forms of flows are described by the represen- 
tation (4.1). 

In  approaching the hierarchy of equations precipitated by the introduction of the 
general power series (2.12) into equations (2.4), it becomes evident that 

( 4 . 4 4  

(4.4b) 

because the nonlinear term in equation (2.4b) is of the order €9. It could be argued 
that a different expansion parameter might be more appropriate in place of 8. Indeed, 
some of the results derived in this section remain valid for 8 of the order one. But 
other results require a small 6 and thus a change of the perturbation parameter does 
not seem advantageous. 

In  the order e2y equation (2.4b) yields 

4 n m  = km. &/a2* 
where q5nm is defined by 

Since the second term on the right-hand side of (4.5) is anti-symmetric with respect 
to z = 0, the solvability condition yields 

&?lo) = 0 (4.6) 

and the solution Of) can be written in the form 

= -Y(?-,S+,) c n c m ~ n m w n w m + -  q 2 y  ---+- 72) (4.7) 
4! 6 6 16 n,m 4! 5 6 240 2 

n+ -m 

In  deriving this solution, the boundary condition 
- 
Bil) = 0 at z = f 4 (4.8a) 

has been used for the horizontally averaged component of Oil) because the horizontal 
mean of the boundary temperatures is given as an external parameter of the problem. 
The remaining component of 0$?) satisfies the boundary condition 

a t  (4.8b) 

Because an explicit expression of vil) is not needed for the later analysis, we proceed 
directly to the order s3y2 of equation (2.4b), which yields 
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The solvability condition for this equation requires that the right-hand side is ortho- 
gonal to all solutions of the homogeneous problem, i.e. it must vanish after multi- 
plication by w,f and averaging over the fluid layer. Using the z-independence of w$ 
and elo) it is readily seen that 

After using the relationship 

the solvability condition yields the set of equations 

Ril)ci = -A 2 $ , , $ l r i c l ~ m ~ , ( ~ , + ~ ~ ~ , ~ ~ + B c , .  for i = -N, ..., - 1 , l  ,..., N, 
(4.11) 1. m. n 

n+ -m 

where A and B are numerical constants given by 

The integral expression in equations (4.1 1) differs from zero only if 

-&+kl+km+kn = 0. 

This condition yields a much simplified set of equations 

Rf)c ,  = ( B + A ~ ~ ~ ~ I c , l e ( 2 - s , , ) ) c ,  for i = - N  ,..., -1,1,..., N ,  (4.12) 
1 8 i  

where an,,, denotes the Kronecker delta symbol. Equations (4.12), together with 
condition (4.3), represents an inhomogeneous system of 2 N  + 1 nonlinear algebraic 
equations for the 2 N  coefficients c, and the coefficient Rill. 

The general solution of equations (4.12) and (4.3) is not known, but a simple 
set of solutions can be easily derived in the case when the values assumed by 
1 Q 111 f N, are the same as those assumed by QIlz ,  1 < 111 < N, for all values of the 
subscript i. The system of equations is solved in this case by 

lcll' = ... = lcNja = 1/2N, (4.13a) 

= B + 2 -  A N  $f1+A/2N. 
N 1-2 

(4.13b) 

A regular k-vector distribution with the constant angle n/N between neighbouring 
vectors obviously fulfils the requirement for solution (4.13). But the requirement is 
also fulfilled in the semi-regular case when each k-vector encloses the angle 2 r / N  
with each of its second nearest neighbours on either side. As in the problem considered 
in SLB, the solutions of the form (4.13) for regular and semi-regular k-vector distri- 
butions are not further restricted by solvability conditions of higher orders. 

The finite value (4.13 b) of Ril) allows us to express the heat transport H, by convec- 
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tion in terms of R - R, for small values of the latter parameter. Using the approximate 

a relationship * 

H, - €9 ep (4.14) 

R - R, = &yR$'), (4.16) 

we find: in the case of two-dimensional solution in the form of rolls, 

r2 = g; 
HE0118 

N = l ,  -- 
R -  B, - 4! 30(B + +A) 

in the case of square pattern convection 

r2 =a.  @quare8 
N = 2, $h12 = 0, - - 

R-R, - 4!30(B+fA) 11 '  

and in the case of hexagonal cells 

(4.16a) 

(4.16 b )  

The fact that squares exhibit a higher heat transport than rolls suggests a dramatic 
change in the physical realized pattern of convection from the traditionally con- 
sidered case /3 = a. The stability analysis confirms this expectation. 

5. Stability analysis 
The analysis of the nonlinear equation for steady convection flows has shown that 

an infinite manifold of solutions exists even though this manifold represents only an 
infinitesimal fraction of the manifold of solutions (4.1) of the linear problem. To 
distinguish the physically realizable solution among all possible steady solutions, the 
stability of v, 0 with respect to arbitrary three-dimensional disturbances v", must be 
investigated. The equations for the time-dependent disturbances are given by 

V"A26 - A2 B = 0, (&la)  

(6 . lb)  

Since the time t does not appear explicitly in the equations, an exponential depen- 
dence, exp (ut), can be assumed. 

When expansions (2.12) for the steady solution v, 8, R is inserted in equation (6.1 b )  
it becomes evident that equations (5.1) can be solved by an analogous expansion, 

a 
at 

v=B-RA,c- -13 = S V . V B + S ~ . V O .  

6 = x €n-1 y m - ( 4  v, , B = x en-1 m On (m) , u = gnyrn~(nm). (5.2) 

u p  < 0 (5.3) 

n=.l,rn.-O tz-l,m=O m-0,m-0 

The investigation of the orders corm of equations (5.1) yields 

if the value r2 of the steady solution v, 0 is chosen such that the Rayleigh number 

Ro = yrnRim) 
m-0 
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assumes its minimum value R,. Since the steady solution itself represents a marginal 
disturbance as far as linear theory is concerned, it must be expected that the strongest 
growing disturbances satisfy the same equations as the steady solution in the limit 
E -+ 0. Restricting the attention to the most dangerous disturbances, we assume the 
equality sign in relationship (5.3) and avoid at the same time the discussion of the 
more complicated boundary conditions of the time-dependent problem. 

Using the representation 
m 

I ~ X , Y )  = I= ZnWn (5.5) 
n= -m 

for the horizontal dependence of the general three-dimensional disturbance, we 
consider equations (5.1) in higher orders of E .  Since relations (4.4) hold for a?), 8km), 
uj:"+') as well as for vlp), BLrn), RP), a non-trivial result can first be obtained in the order 
elyl of equation (5.1 b ) .  But because of the symmetry of the problem with respect to 
z = 0, 

is found in analogy to (4.6) and solution 8i1) can be written in the form 

(5.6) up = 0 

(5.7) 

The possibility of a non-vanishing positive coefficient uLm) appears first in the order 
e2y2, where the solvability condition yields the following set of equations in analogy 
to (4.12), 

.v 

e= -A' 
-uiz)DEi = -RL1)Zi+B Ice/*+ci (ce?$+c:Ee)) - 

#zi(~eC$+~.$Ce)+Zi  2 $zilcJ' 
e+t 

+ci &(ceZ$+c$Ee)+Ei $52 pel2) for - N  < i <  N (5.8) 
e+Z, - i  e 4 Z .  -i e i  

and 
A' i\r 

e= -N e= - N  
-ui2)DZ, = -Rhl)Zi+BZi Ice12+2ACi C # i e l ~ e 1 2  for lil > N ,  (5.9) 

where t,he latter equations are generated by functions w$ with vectors ki different 
from any vector k,, - N < n < N ,  and where D is a constant given by 

D = 720/7:. 

Using expression (4.12), it is readily seen that t,he underlined terms cancel in equations 
(5.8). 

The matrix Mii  of the coefficients of Zj in thesystem of linear homogeneous equations 
(5.8) is given by 

where Ll, is defined by 
Mii = up) DSij + Lijcic,' 

Li j = [ 2B + (4& - 38, j - 384 j) A ] .  

(5.10) 

(5.11) 

(The reader is reminded that t,he summation convention is not used in this paper.) 
The eigenvalues uiz) correspond t,o the zeros of the determinant of the matrix Nii. 
This determinant can be evaluated by first dividing the rows and columns of Hii 
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by ci and cj',  respectively, and by then subtracting the ith row from the -ith 
row, i = 1, . . ., M and adding the - j th column to the j th  column, j = 1, .. ., N .  The 
resulting determinant can be written in the form 

det (u2)DSij/lci12) det (u2)DSij/lci12+ 2Lij) = 0 (5.12) 

where the subscripts i ,  j run from 1 to N only. The first determinant in equation (5.12) 
yields N eigenvalues ui2) = 0. The corresponding neutral disturbances include those 
causing a translation of the steady solution. Since they cannot grow, they are not of 
interest for the stability problem. In discussing the second determinant we shall 
restrict the attention to regular or semi-regular steady solutions satisfying relation- 
ships (4.13). After writing this determinant as a polynomial in u, 

N 

n=O 
det ( v$~)DS~JZN + 2Lij) = C un(ui2))n = 0 (5.13) 

we find that the coefficients aN and aN-l are positive, while ah--2 is negative if 

N 

Lj=l 
F($tj) = {16AB(1-4#5,)+4A2(1-16&j)} c 0.  (5.14) 

.. 
i>j 

Since a polynomial exhibiting a change of sign among its coefficients admits at  least 
one positive root, a steady solution is unstable if condition (5.14) can be satisfied. 

Condition (5.14) cannot be satisfied in the case of the roll- and square-solutions be- 
cause aAv-2 does not exist in the former and #12 = 0 in the latter case. For the hexagon 
solution condition (5.14) is not satisfied because F(#ij )  vanishes. Any solution with 
A' = 2 is unstable according to condition (5.14) unless 

194121 < 4, (5.15) 

i.e. if the angle between the t'wo k vectors lies between 60' and 120'. All solutions of 
the form ( 4 . 1 3 ~ )  with hr 2 4 are unstable mainly because the number of cases for 
which condition (5.15) is not fulfilled for two vectors k,, k, exceeds the number of 
cases for which it is satisfied. For regular solutions this is readily shown by evaluating 
F(#sj) .  Using #i,i+l = cos m/N for i = 1, . . . , N and employing the formula, 

N 2nm ( ~ + n b )  cos - = aNb, 
n- 1 N 

we find F(#ij) = [ 2 N -  N ( N -  l)] (8AB+ 10A2) (5.16) 

which clearly demonstrates that condition (5.14) is satisfied for N 2 4. The corres- 
ponding proof for semi-regular solutions is analogous, but more complex and will not 
be given here. 

To prove stability for any steady solution that does not satisfy condition (5.14)) 
the remaining eigenvalues u!j2) governed by equations (5.9) must be investigated. 
The determinant for this system of equations can be written as a product of terms of 
the form 

up0 + A  (4 5 (&- #:J l C p +  31c1p). (5.17) 

The condition that expression (5.17) vanishes leads to a maximum positive eigenvalue 
ci2) in the case N = 1 when k, is chosen such that = 0. Thus, convection in the 

e- 1 
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form of rolls is unstable to disturbances in the form of rolls oriented at  a right angle 
to the original rolls. This result gives another indication of the preferred role of the 
square-solution which corresponds to the superposition of two roll solutions at  a 
right angle. Indeed, the evaluation of expression (5.16) for the squaxe solution yields 

V"'D = -3Alc,)2 
because of the property 

&+& = 1 for all i. 

(5.18) 

For the hexagon solution, the same expression (5.18) for the eigenvalue .;z") is obtained. 
However, since it is known from the analysis of SLB that the hexagon solution is 
unstable in the case p = 00 owing to a negative value of the coefficient uNF2 in expres- 
sion (5.13), it  must be expected that condition (5.14) will be satisfied because of a 
small contribution of higher order in y.  For the square-solution this is not possible 
in the limit of small y since the expression (5.16) is negative definite. Thus, we con- 
clude as the result of the stability analysis that among the solutions of the form 
(4.13a), only those with N = 2 and with property (5.15) are physically realizable. 
Among the latter solutions, the square-solution is clearly distinguished because of 
its maximum heat transport and because the most strongly growing disturbances of 
unstable solutions tend to transform them into the square solution. 

6. Discussion 
In  formulating the mathematical problem (2.4) we have assumed the limit of 

infinite Prandtl number. This assumption allowed us to drop the variable @ from our 
consideration and to neglect the nonlinear term 

P-1s. (SV . Vbv) (6.1) 

in equation ( 2 . 4 ~ ) .  An inspection of the analysis shows that the results remain un- 
changed to the order to which they have been derived if an arbitrary value of the 
Prandtl number is assumed. As in the analysis of Schliiter et ul. (1965), the toroidal 
component V x X$ of the velocity field is of the order e3 or higher and thus cannot 
enter the analysis described in the preceding section. In  contrast to the case y = co 
the term (6.1) does not enter the analysis either. While the function will depend 
on P, OF) remains independent of the Prandtl number. Since 8:') and enter the 
expression for R!f) and a$z) but vil) and EL1) do not because of relationship (4.10), the 
results derived in this paper do indeed hold for arbitrary values of the Prandtl number. 
Only if P tends to zero and becomes comparable to y* does this conclusion need 
to be changed. A more detailed analysis which will not be reported here shows 
that for y < 0.44 Pa the results of this paper hold qualitatively. When the ' c ' 
sign in this inequality is replaced by a '<' sign, the results are quantitatively 
correct. 

In  formulating the problem addressed in this paper, we have assumed for simplicity 
infinite half spaces of constant conductivity above and below the fluid layer. But the 
results of the analysis do not change significantly when more realistic thermal boundary 
conditions are assumed as long as the thermal conductivity of the boundary is low 
compared to that of the fluid. Consider, for example, a fluid layer of depth a' bounded 
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by two rigid plates of thickness Sd with constant temperatures prescribed on the 
outer boundaries of the plates. The solution of equation (2 .7)  is given by 

in this case and yields the boundary condition 

1 at z = & &, 
a -el = T/3B,acothaS 
az 

= T pel(sl+ a ~ / 3  + . . . 1 
instead of condition (2.8 b ) .  The appropriate definition of the perturbation parameter 
is 

in place of definition (2 .9 ) .  But the rest of the analysis remains unchanged except 
that 7 disappears from condition (3 .10b)  and the expression (3.1) for RA') is replaced 

2 
RA1) = 720 (? t 

6 x 7 ~ 1 1  

which leads to somewhat different numerical values of RL;) and v,, 

( 6 . 5 ~ )  

(6.5b) 

In the nonlinear part of the analysis, only the property of the large wavelength of 
convection is essential and thus the results can be applied to a variety of problems 
with boundaries of low conductivity of which the configuration considered here is 
but an example. There appears to be no difficulty in finding experimentally realizable 
configurations . 

We have already mentioned that the square pattern solution is distinguished by 
a maximum heat transport. That this claim is justified a t  least among all regular and 
semi-regular solutions is easily shown by an evaluation of expression (4.13 b ) ,  which 
yields 

RLI) = B + A ( 1 - 3 / 2 N )  for N 2 3 ( 6 . 6 ~ )  

and RL') = B+A($+cos2$) for N = 2 (6.6b)  

where $ represents the angle between k, and k,. The close relationship between 
stability and maximum heat transport is not unexpected in the small amplitude 
limit. It has been invoked by Malkus & Veronis (1958) in their first study of small 
amplitude convection and has been derived under rather general conditions by Busse 
(1967).  The proof of the latter paper actually applies to the problem considered in 
this paper. It was not used here, since the explicit stability analysis yields more 
detailed information such as the form of the critical disturbances for the unstable 
solutions. 

In  the stability analysis only disturbances with the wavenumber a of the steady 
solution have been considered because disturbances with a different wavenumber 
yield negative values of uAo) in the case a = a,. In the case a + a, the most strongly 
growing disturbances have wavenumbers d which do not equal a. The stability analysis 
can be carried out in analogy to that given by Busse (197 l ) ,  but it will not be presented 
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here, since the main concern of this paper is the pattern rather than the range of wave- 
numbers of the realized convection flow. We would like to emphasize, however, that 
the stability analysis of the case a + a,, as well as that of the case a = a, considered 
in this paper, requires a small but finite value of /3 in order that Rayleigh number 
reaches a minimum at a small but finite value of a,. In the limit of vanishing p the 
range of amplitudes E for which the analysis applies also vanishes since the Rayleigh 
number of modes with the critical wavenumber ac becomes indistinguishable from 
the Rayleigh number of their higher harmonics. But since the limit p = 0 is not 
physically realistic, it will not be given special consideration. 

The research reported in this paper has been supported by the Meteorology Pro- 
gram, Division of Atmospheric Sciences, U.S. National Science Foundation. 
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